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Abstract —A flexible and effective algorithm is proposed for efficient

optimization with integrated gradient approximations. It combines the

techniques of perturbations, the Broyden update, and the speciaf iterations

of Powell. Perturbations are used to provide an initiaf approximation as

well as regular corrections. The approximate gradient is updated using

Broyden’s formufa in conjunction with the special iterations of Powell. A

modification to the Broyden update is introduced to exploit possible

sparsity of the Jacobian. Utiliiing this afgoritbm, powerful gradient-based

nordiuear optimization tools for circuit CAD can be employed without the

effort of calculating exact derivatives. Applications of practical significance

are demonstrated. The examples include robust smafl-signal FET modeling

using the 11 tec~!ques and simultaneous processing of multiple circuits,

worst-case design of a microwave ampfifier, and minimax optimization of a

five-channel manifold multiplexer. Computational efficiency is greatly

improved as compared to estimating derivatives entirely by perturbations.

I. INTRODUCTION

M

ANY POWERFUL gradient-based algorithms have

been developed in recent years for nonlinear opti-

mization and applied to circuit CAD problems. For exam-

ple, Bandler, Kellermann, and Madsen have described

algorithms for linearly constrained minimax and /l optimi-

zation [1], [2]. However, the effort to extend their applica-

tion to a wide range of practical problems has been

frustrated by the requirement of exact gradients of all

functions with respect to all variables. For some applica-

tions, either an explicit sensitivity expression is not avail-

able, e.g., when time-domain analysis and nonlinear cir-

cuits are involved, or the actual evaluation of such an

expression is very tedious and time-consuming, e.g., for

large-scale networks. Partly due to these difficulties, exact

sensitivity calculations have not been implemented in many

general-purpose CAD software packages, although the

concept of adjoint network has been in existence for nearly
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two decades and has had success in many specialized

applications. The inability or inconvenience in calculating

the exact derivatives has created a gap between the theoret-

ical advances in gradient-based nonlinear optimization

techniques and their actual implementation.

With only the function values available, as is the case for

many CAD packages on the market, one usually resorts to

the method of perturbations (finite differences) for gradi-

ents. However, this seemingly simple alternative becomes

extremely inefficient when large-scale problems have to be

dealt with.
In this paper, we propose a flexible and effective ap-

proach to optimization with integrated gradient approxi-

mations. It is a hybrid approach which incorporates the

use of perturbations, the Broyden update [3], and the

special iterations of Powell [4]. The proposed algorithm

extends the previous work by Madsen [5] and Zuberek [6]

in two aspects. Perturbations are integrated in a flexible

manner to allow regular corrections to the approximate

gradients. Therefore, a suitable compromise between accu-

racy and computational labor m;ay be achieved for various

applications, especially for large-scale circuit optimization.

We also propose a modified Broyden update to take

advantage of a possible sparse structure of the problem.

The practical usefulness of the new algorithm is demon-

strated through three diverse applications. The subjects are

of primary interest to microwave circuit engineers: robust

small-signal modeling of FET devices, worst-case fixed

tolerance design of a microwave amplifier, and large-scale

optimization of manifold multiplexer. Applying an ap-
proach to robust device modeling proposed by the authors

[7] which employs the /l optimization techniques and a

novel concept of simultaneous processing of multiple cir-

cuits, we have obtained self-consistent models of a FET

device using real measurement data. By integrating gradi-

ent approximations with a powerful minimax algorithm

[1], we are able to optimize a five-channel noncontiguous

band multiplexer efficiently and without exact derivatives.

The multiplexer problem involves 75 nonlinear variables.

II. GRADIENT APPROXIMATIONS

A. Estimating the Gradient by Perturbations

The first-order derivative of ~ (x) with respect to xl can

be estimated by

afi(x) ~~(x+lwl)–j(x)

axi h
(1)
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where x = [xl X2. “ . x.] ~ is the vector of variables, and Ui

is a column vector which has 1 in the ith position and

zeros elsewhere. The accuracy of such an estimate may be

improved by using a smaller h as well as by averaging the

results of a two-sided approximation (using both positive

and negative perturbations). This method is straightfor-

ward and reliable. However, the computational labor in-

volved grows in proportion to the dimension of the prob-

lem.

In the new algorithm described in this section, perturba-

tions are used to obtain an initial approximation to the

gradient at the starting point of an optimization process.

During the optimization, we may also incorporate a regu-

lar use of perturbations to maintain the accuracy of gradi-

ent approximations at a desirable level.

B. The Broyden Update

The Broyden update refers to a rank-one formula pro-

posed by Broyden [3] as

f(.rk+hk)– f(xk)– GkhkhT
G,+l=Gk+

h:hk
~ (2)

where G~ is an approximation of the Jacobian [ d ~ ‘\ilx] ~

at x~, h ~ is an increment vector and G~+ ~ provides an

updated Jacobian. The values of the function j at x~ and

(x~ + hk) are assumed available. If the two points (x~ and

(x~ + h ~)) are iterates of the optimization process, then the

Broyden update requires no additional function evalua-

tions, regardless of the dimension of the problem.

Apparently, the approximate Jacobians generated by the

Broyden update are in general less accurate than those

obtained from perturbations. Hence, the optimization may

require more steps to reach the solution or may not reach

the correct solution at all. Broyden [3] has shown that for

quadratic functions the Broyden update will converge and

will reduce the overall computational effort. Although such

properties cannot be proved for a general nonlinear prob-

lem, the Broyden update still provides an efficient altern-

ative for approximating derivatives.

The updated approximation G~+ ~ satisfies the following

equation:

f(xk+hk)– f(Xk) =Gk+lhk. (3)

In other words, Gk+l provides a perfect linear interpola-

tion between the two points x~ and (x~ + hk).
Some difficulties in the application of the Broyden up-

date have been observed by many researchers (see, for

example, [4], [5], and [6]).

1) If some functions are linear in some variables and if

the corresponding components of h ~ are nonzero, then the

approximations of constant derivatives are updated by

nonzero values. Consider a simple example. Let ~ = X? +

2X3 be a function in ~. Denote the variables by x = [xl XJ

X3] T and the gradient by ~ ‘(x) = [ gl g2 g3] ? TWO compo-

nents of the gradient, namely g2 = O and g~ = 2, are con-

stants and can be found accurately by perturbations; gl is

the only component that needs to be updated. Suppose
that x~ = [1 1 1]~, hk = [0.5 0.5 0.5]~, and a perfect esti-

mation of ~. ‘(x~) is available as [2 O 2] ~. The approx-

imation to ~.’ (x~ + h ~), as given by the Broyden up-

date, would be [2.167 0.167 2.167]~ (the true value is

[3 o 2]~).

2) Along directions orthogonal to hk the Jacobian is not

updated:

Gk.,lp = Gkp, fcm-p~h~=O. (4)

To overcome these difficulties, we implement a weighted

update and the special iterations c~f Powell [4].

C. Weighted Broyden Update

The weighted update is to be applied to the Jacobian

matrix on a row-by-row basis. The jth row vector of the

approximate Jacobian, denoted by ( gj ) ~, is an approxima-

tion to ~ ‘(x~), the gradient of ~. Suppose that the Hess-

ian of ~ is available to us and denoted by Hj; then

~’(x~+h~) = $’(xk)+Hj(xk)hk. (5)

Analogously to (5), we devise an updating formula to

obtain an approximation to ~‘( XA + h ~) as

(gj)~+~= (g,), +~qxk)hk. (6)

If we choose the coefficient a as

f(xk+hk)- fi(xk)-(gj):hk
~=–J

h:Hj(xk:lhk
(7)

then the linear model as given by (3) will be preserved,

namely

~(xk+hk)- ~(xk) ‘~ (~j)~+lhk. (8)

In practice we are very unlikely to have access to the

Hessian of any ~. Even so, two ba!sic facts are obvious: the

Hessian of a quadratic function ‘k constant, and if ~ is

linear in x,, then the ith row and the ith column of the

Hessian contain only zeros. Hence, we propose the use of a

constant diagonal matrix

Wj=diag[wjl. “. Wj. ], Wjj >0, i=l,. ... n. (9)

This leads to a weighted Broyden update as follows.

T
qjk = ‘,hk= [Wjlhkl - “ “ ‘jnhkn] . (lo)

The weights w,, provide a measure of the linearity of ~.

If ~ is linear in xi, we set w,, = O, and if L is nearly linear

in xi, we assign a small value tc) WJ,. It should be clear

from (10) that only the relative magnitude of the weights is

important, not their absolute values.

Consider the simple example we have used in the previ-

ous section, namely ~. = x? +2X3. Since ~. is independent

of X2 and linear in X3, we set Mj2 = W,3= O and Wjl = 1.

The approximate gradient given by (10) is [2.5 O 2]~,

compared to the result given by the Broyden update as

[2.167 0.167 2.167]T, and the true gradient [3 O 2]T.
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The assignment of weights requires some knowledge of

the functional relationship of fi( x). Such a knowledge

may come from experience or maybe gained from sensitiv-

ityy analyses by performing a few perturbations. For in-

stance, for a particular circuit, it may be known that some

designable parameters have little influence on the perfor-

mance function over some frequency or time intervals.

Using an adaptive method to find WJ might be of some

theoretical interest. But it was felt to be unnecessary and

too complicated to be practical at the present time.

D. Powell’s Special Iterations

The Broyden update is a rank-one method. As has been

shown in (4), along directions orthogonal to h ~ the ap-

proximate Jacobian is not updated. If some consecutive

steps of optimization happen to be collinear, the updating

procedure may not converge. Powell [4] suggested a method

which produces strictly linearly independent directions.

For this purpose, special iterations are introduced which

intervene between the ordinary iterations of optimization.

The increment vector of such a special iteration is not

calculated to m@nize the error functions; instead it serves

the purpose of improving the accuracy of gradient ap-

proximations. The algorithm for computing the increment

vector for a special iteration, as derived by Powell, is given

in the Appendix.

III. A HYBRID APPROXIMATION ALGORITHM

Our hybrid algorithm for gradient approximations con-

sists of an initial approximation, the Broyden update,

Powell’s special iterations, and regular corrections pro-

vided by perturbations.

At the starting point of optimization, the initial ap-

proximate Jacobian GO is usually computed by perturba-

tions. However, GO maybe already available; for example,

it may have been stored from a previous optimization, and

can be utilized to avoid unnecessary computations. This

option would be useful if similar problems are being

solved repetitively (e.g., the same circuit is optimized with

respect to different specifications). The accuracy of Go is

not very critical to the overall approximation. We have

observed for some examples that convergence was achieved

despite the erroneous estimates of Go.

There is little hard evidence as to how frequently the

special iterations should be used. Numerical experience,

ours as well as other authors’, has suggested the use of a

special iteration between every two ordinary ones (i.e.,

every third iteration is a special iteration). Also, in our

implementation, a special iteration is skipped provided

that the changes in the functions agree fairly well with the

linear prediction by the approximate gradient. This is

considered to be true if

<o.lll~(x~+lzk)– f(%)ll. (11)

The purpose of this provision is to avoid unnecessary

computations.

Whether perturbations should be used during optimiza-

tion depends on the application. For small or mildly

nonlinear problems, the Broyden update may suffice. For

large-scale problems, especially in circuit applications

where highly nonlinear functions are involved, the correc-

tion provided by perturbations is likely to be necessary.

We have incorporated in our algorithm the use of per-

turbations with prescribed regularity, say, at every k th

optimization iteration.

The Broyden update with or without weights, depending

on whether the necessary knowledge of ~(x) is available,

is employed between perturbations.

Software for gradient-based optimization typically re-

quires a user-defined routine which accepts a set of values

for x as input and returns the values of j(x) as well as the

first-order derivatives. We have implemented an interface

which integrates gradient approximations with optimiza-

tion. Taking a set of values for x from an optimizer, it calls

a user-defined routine for the function values, carries out

necessary operations for gradient approximations, and then

returns to the optimizer the values of ~(x) as well as the

approximate Jacobian. The interface is transparent to both

the optimizer and the user-defined simulation routine. The

optimizer is provided with the required gradients, and the

user-defined routine (typically a circuit simulation module)

works as if the optimizer did not require gradients.

We have integrated our gradient approximation al-

gorithm with two recent optimization methods [1], [2], for

the minimax problems as

miniXfize m,ax { ~ ( x) } (12)

and the 11 problems as

(13)

respectively. The methods described in [1] and [2] are

two-stage algorithms. The second stage is to be employed

near the solution to accelerate the rate of convergence, for

which the accuracy of the approximate gradient may be-

come critical. Hence, our implementation allows a more

frequent use of perturbations in the second stage.

The effectiveness and efficiency of the new approach are

clearly shown from the results of solving a large variety of

problems. The results on some mathematical test problems

can be found in [8], [9], and [10].

IV. A TWO-SECTION TRANSMISSION-LINE

TRANSFORMER EXAMPLE

Consider the classical two-section 10:1 transmission-

line transformer shown in Fig. 1. Originally proposed by

Bandler and Macdonald [11], this problem has been widely

used to test rninimax algorithms. The error functions (~)

are given by the reflection coefficient sampled at 11 fre-

quencies normalized with respect to 1 GHz: {0.5,

0.6,. . . , 1.5}. Madsen and Schjaer-Jacobsen [12] have

shown that when we take the characteristic impedances ZI

and Zt as variables and keep the lengths II and Iz con-
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Fig. 1. Two-section, 10:1 transmission-line transformer.
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Fig. 2. Minimax contours for the two-dimensionaf singnkw rninimax
problem arising from optimization of the two-section transmission-line
transformer. Eight iterations using exact gradients are illustrated.

stant at their optkal values (the quarter wavelength at the

center frequency), the minimax problem is singular. Fig. 2

shows the minimax contours and illustrates the solution

obtained using exact derivatives. If the derivatives were to

be, estimated by perturbations, 24 function evaluations

would have to be performed. Using our gradient ap-

proximation, we obtained the solution, as shown in Fig. 3,

after 18 function evaluations.

For the same transformer, we also formulate an 11

problem. The reflection coefficient at the minimmi opti-

mum was taken as a measurement from which we attempt

to identify’ the values of ,21 and Z2. me solutions obtained
with the gradients estimated entirely by perturbations and

by otir new algorithm are illustrated in Figs. 4 and 5,

respectively.

A comparison between Figs. 2 to 5 reveals that the

solutions obtained using approximate gradients require

more iterations of the optimization but overall fewer func-

tion evaluations, which is expected.

6.0

5.5

5.0

N“ 4.5

4.0

3.5

z,

Fig. 3. Minimax optimization of the two-section transmission-line
transformer. Ten iterations using approximate gradients are illustrated.

N“

5

z,

Fig. 4. II contours for the problem arising from parameter identifica-
tion of the two-section transmission-line transformer. Using perturba-
tions for the gradients, the solution required 14 iterations (42 function
evaluations). The first seven iterations are illustrated.

V. FET MODELING USING 11 OPTIMIZATION WITH

APPROXIMATE GLADIENTS

A. Introductory Remarks

The use of 11 optimization, based on its theoretical

properties, has been recommended for nonlinear data fit-

ting and device modeling [1], [7], [13]. Jansen and Koster



IEEE TBANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 2, FEBRUARY 1988448

6.0

5.5

5.0

4.5

N“
4.0

35

30

2.5

2.0
1.0 1.5 2.0 2.5 30 3.5

z,

Fig. 5. Parameter identification of the two-section transmission-line
transformer using 11 optimization with approximate gradients. The
solution has required 19 iterations and 27 function evaluations. The
first nine iterations are illustrated.

[14] have investigated the use of generalized 1P optimiza-

tion in the modeling of microwave transistors, and they

concluded that values of p around unity would lead to

relatively stable solutions with good convergence proper-

ties. A novel approach to robust modeling of microwave

devices has been presented by the authors [7] which ex-

ploits the unique properties of the 11 norm and employs

the concept of simultaneous processing of multiple cir-

cuits. It has the advantage of establishing not only a good

equivalent circuit model but also a reliable measure of the

self-consistency of the model. In the context of this paper,

an example of FET modeling is given to illustrate the 11

optimization with integrated gradient approximations.

One of the concerns in practical modeling of FET

devices is the uniqueness of the solution. A family of

solutions may exist which all exhibit a reasonable match

between the calculated and measured responses. The ap-

proach described in [7] is intended to improve the chance

of unique identification of the model parameters by
processing simultaneously multiple circuits. In the case of

FET modeling, we create multiple circuits by taking mea-
surements on the scattering parameters under several dif-

ferent biasing conditions. From the physical characteristics

of the device, we know that with respect to different

biasing conditions some model parameters should remain

almost unchanged while the others should vary smoothly.

Therefore, from a family of possible solutions we give

preference to the one that exhibits the desired consistency.

Such a self-consistent model can be achieved automatically

by using the 11 optimization and choosing those model

Rg C dg Rd
11gate ~ w——+ drain

Ri

7!7
source

Fig. 6. The small-signal equivalent circuit model for the FET device.

parameters that are insensitive to bias as common vari-

ables.

B. The Jklodel and the Measurements

The small-signal equivalent circuit model for the FET is

shown in Fig. 6. This model is widely used by commercial

programs such as TOUCHSTONE [15] and SUPER-

COMPACT [16]. The model has 11 parameters that we

will consider as optimization variables:

{R8,R~,L,,~,R~,, R,, R,, Cs.,, C~~, C~,, g~).

The first four parameters are considered to be bias insensi-

tive.

Three sets of measurements on scattering parameters of

a FET device, which were taken at 17 frequency points

from 2 GHz to 18 GHz, 1 GHz apart, under the following

biasing conditions were made available by Pucel [17]:

1) V~, = 4 V, V~~= 0.00 V, Id, =177 rnA

2) Vd, =4V, V&= –1.74V, Id~=92mA

3) Vd, =4V, V~, = –3.IOV, Id, =37mA.

C. Formulation of the Problem

Microwave device modeling utilizing multiple circuits

has been formulated in general as an 11 optimization

problem by the authors [7]. The following are formulas

(12) to (14) in [2]:

where

j’=w;[q(x’)-(q~)q (15)

and

1:1
x’

x:
x=

.,

x;’

(16)

with superscript and index t identifying the tth circuit. n ~

is the number of circuits and k, is the number of functions
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arising from the t th circuit. X1 represents the vector of

parameters of the t th circuit. Vectors x:, t=1,”“ “, n.,

contain only those parameters that vary between different

circuits. They do not include the common variables, i.e.,

those parameters that assume the same values for all

circuits. For each circuit, we combine the common vari-

ables and X: to form the vector x~.

For the FET modeling problem under consideration,

which has three sets

formulas as follow5:

3 17 2

minimize ~ ~ ~
x

f=li=lj=l

of rn~asurements, we specialize the

i (lMtwil I+lmxd] 1)
k=l

(17)

where

f~(q)=qj(x’,tii )-i’k((iri). (18)

In (18), ~~ and S;k are the calculated and measured
scattering parameters, respectively, with the superscript

identifying three different biasing conditions. Having 17

frequency points with real and imaginary parts of the

complex S parameters being treated separately, we have a

total of 408 error functions. The variables to be optimized

in (17) are defined as

[1

x’

x: x: . (19)

x:

The vector xl actually has two parts as X1= [xc x~]~,

where xc consists of the common variables as

Xc= [RgRdL~ T
IT

(20)

These are the parameters we expect not to change with

respect to different bias. The vector x: contains the re-

maining parameters of model t,namely

[ 1xi = R;~ R: R: CJ C:~ C:. g; ‘. (21)

The total number of variables is 25.

D. Results

To solve the problem we have formulated, the /l opti-

mizer described in [2] was employed. The gradient required

was provided by the approach proposed in this paper. We

should point out that in this case the evaluation of exact

sensitivities is actually possible using the scheme outlined

in [7]. However, it involves lengthy and complicated pro-

gramming. First of all, two adjoint solutions are needed to

evaluate the sensitivity expressions for the admittance ma-

trix. From these expressions the sensitivities of the S

parameters are derived. Since multiple circuits tie processed

simultaneously, a complex codihg scheme is needed to

associate functions arising from different circuits with the

appropriate variables. It is then very difficult to modify the

software when needed. Comparatively, the calculation of

the function values alone requires much simpler effort.

TABLE I
PARAMSTER VALUES OF THE FET MODELS

solution
Parameter Starting Point

Case1 Case2 Case3

Rg (OH) 1.0 2.61X!5 2.6025 2.6025

Rd (OH) 1.0 3.76:)0 3.7630 3.7630

R~, (KOH) 0.143 0.19!~2 0.1638 0.1632

Ri (OH) 1.0 0.00!)9 0.0999 0.3891

R, (OH) 1.0 1.0016 0.9220 0.6482

L, (nH) 0.02 0.00}9 0.0039 0.0039

cm (PF) 1.4 0.71111 0.4417 0.3454

%g (PF) 0.07 0.0306 0.0475 0.0609

% (PF) 0.4 0.2228 0.2229 0.2151

g~ (/OH) 0.09 0.06’96 0.0521 0.0410

r (ps) 7.0 3.9558 3.9558 3.9558

Biasing Conditions

Case 1: Vd,=4V V@= 0.00V Id,=177mA

Case 2 V&=4V Vm=- 1.74V Id,= 92mA

Case 3 Vd,=4V vr=-3.10’v I&= 37mA

The starting points for the three circuits are identical.

This, from the view point of reducing software complexity,

justifies the pursuit of gradient approximation.

Three experiments were conducted which have used

different schemes for gradient approximation. From the

starting point given in Table I, they have reached practi-

cally the same solution, which is also given in Table I. The

matches between the calculated and measured responses

for the first circuit, at both the starting point and the

solution, we shown in Figs. 7 and 8. The match for the

other two biasing conditions is similar and hence omitted.

The first experiment corresponds to the conventiofial

approach, in wlhich the gradients were estimated solely by

perturbations. A total of 468 circuit simulations were

required to reach the solution.

In the second case, the Broyden update without weights

was used. Regular corrections wore also provided by per-

turbations for every five iterations. Only 128 circuit simu-

lations were needed for this solution.

For the third experiment, W* took advantage of an

inherent decomposition in the multi-circuit formulation.

Notice that the responses (and error functions) of one

circuit are absolutely uncorrelated to the independent

parameters (x:) of ,any other circuits. Obviously, the de-

rivatives corresponding to such decoupled functions and

variables are always equal to zero. However, when we use

the Broyden update without weights, these derivatives may

be changed to some nonzero values, thus introducing ap-

parent errors to the approximation. We can avoid this by

using the weighted update. By assigning zero weights to

decoupled functions and variables, we can keep the zero
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Fig. 8. ~escattefing pmaeter match between the FETmodel mdtiemeasurements atthesolution, for Vd~=4V, Vg, =O
V, and fd, =177mA.

derivatives undisturbed throughout the optimization pro-

cess. The application of this concept has reduced the use of

perturbations and led to the solution after only 79 circuit

simulations. This represents less than 1/5 of the simula-

tions required by the first experiment as well as a 38

percent saving in computational effort as compared to the

second experiment.

VI. WORST-CASE DESIGN OF A MICROWAVE AMPLIFIER

Worst-case design using optimization techniques in gen-

eral has been discussed in [181. Consider a vector of-.
nominal designable parameters

0“=[4’V””4W (22)
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/All,Z J?2,Z TABLE II
PARAMETER VALUSS OF THE MICROWAVE AMPLIFIER

//./), ea,z 14,2 /), ,1
509 Transistor 50 f)

NEC70000

Fig. 9. A microwave amplifier.

Parameter Starting Point Solution

el 52.96 69.01

4 148.13 152.01

++ 26.80 18.48

a vector of associated tolerances

&=[&l...&n]T
and a tolerance region defined by

Re={r$p#lo-&<r#)<+O+E}.

(23)

(24)

We seek an optimally centered design such that the

specifications are satisfied over the tolerance region. It can

be formulated as a minimax problem, as

(25)

where ~, j =1,. . ., m, are a set of error functions derived

from the design specifications. In practice, we usually

consider as candidates for the worst case the vertices of the

tolerance region defined by

RU={ql@i =@~+&ipi, pi={–l,l}, i=l,. .o, n}. (26)

Consider the worst-case fixed tolerance design of a

microwave amplifier. As shown in Fig. 9, the amplifier

consists of a NEC70000 FET and five transmission lines

[15]. The FET is characterized by tabulated scattering

parameters provided by the manufacturer. The design vari-

ables are the characteristic impedance Z and the lengths 1,

of the transmission lines. For each length li we assume a 5

percent tolerance. The design specifications are given by

7.05 dB< 2010g&l <8.2 dB for aj=6,7, ”. .,18 @3z.

A total of 26 error functions (~) arise from the upper and

lower specifications at 13 frequencies.

The worst-case design was accomplished by two phases

of optimization. In the first one, we predicted an initial set

of worst-case vertices by first-order changes. For each & a

vertex @ was selected by

where the derivatives ~~ /d +, were estimated at the nomi-

nal point at the start of the optimization by perturbations.

Consequently, 26 vertices (one for each ~) were considered

for the minimax problem

At the solution, by using (27) with respect to the new

nominal point, we found that ten of the worst-case vertices

had changed (i.e., the signs of some d~/6’~i had changed).

The new vertices were added to the worst-case set. The

corresponding old vertices were kept, rather than replaced,

in order to stabilize the algorithm. We had, therefore, a

~4 24.01 5.10

!5 46.63 36.49

z 81.27 126.39

The starting point is a minimat nominal design

FREQUENCY ( GHZ )

Fig. 10. Worst-case envelope for the amplifier response at the centered
solution.

total of 36 worst-case vertices. A second optimization was

performed and at its solution the worst-case set was found

to be complete (i.e., no more sign change in (27]).

The nominal parameter values at the starting point and

the final solution are given in Talble II. The total number

of function evaluations is 280, in contrast to the 585

required if perturbations were used throughout the optimiz-

ation. Fig. 10 depicts the worst-case envelope at the

solution.

VII. PRACTICAL CIESIGN OF A

FIVE-CHANNEL MLJLTIPLEXER

A. Introductory Remarks

A minimax solution of a five-channel 11-GHz noncon-

tiguous band multiplexer was given in detail by Bandler

et al. [1]. In order to provide the exact sensitivities re-

quired, the theory due to Bandler et al. [19] was imple-

mented in a computer program which has taken months of

effort to develop and test. Furthermore, because the sensi-

tivity expressions depend highly on the circuit structure

and vary from component to component, every change to

the problem, such as assigning different variables, requires

expert modification to the software. In fact, the sensitivi-
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FREQUENCY [MHZ]

Fig. 11. Responses of the five-channel multiplexer at the starting point.

ties with respect to all possible variables were computed

even though some of them have not been actually used;

otherwise the coding scheme would have become un-

manageable. Large amounts of computer memory were

required to store various adjoint solutions and inter-

mediate expressions. By utilizing our gradient approxima-

tion, it is possible to efficiently design a multiplexer without

all these troubles associated with computing the exact

sensitivities. The complexity and size of the program can

therefore be considerably reduced.

The five-channel multiplexer provides an excellent illus-

tration of efficient gradient approximations for two rea-

sons. First, it involves 75 variables and, therefore, to rely

on perturbations would be prohibitively expensive. To be

more specific, suppose that we use the initial parameter

values and specifications suggested by Bandler et al. [1].

The multiplexer responses at the starting point are shown

in Fig. 11. We have reached a result similar to the one

reported in [1] after 50 iterations of optimization using

exact derivatives. To rely on perturbations for the gradi-

ents, we would have to compute multiplexer responses

3800 times (50 X76). We will show that efficient gradient

approximations reduce the number of response evaluations

significantly.

Also, this example is naturally suited for the use of the

weighted Broyden update described earlier in this paper.

From Fig. 11 it is intuitively obvious that the response

functions at lower frequencies should be almost indepen-

dent of the variables that are related to the filters of

channels 1 and 2 (channel 1 has the highest center

frequency). Similarly, the responses at higher frequencies

are almost independent of the variables related to the

filters of channels 3, 4 and 5. We will demonstrate the

advantage of using the weighted update.

B. Results

Details of the five-channel multiplexer structure, such as

the channel center frequencies, bandwidths, and coupling

matrices, can be found in [1]. The channel filters are

assumed lossy. Frequency dispersion and nonideal junc-

tions are also taken into account. For all the results that

Fig. 12. Responses of the five-channel multiplexer obtained using only
the Broyden update and sDecial integrations for gradient aDDroxima-
tions. The opti~ation has-stopped prematurely. “

.,

FREQUENCY [MHZ)

Fig. 13. Responses of the five-channel multiplexer obtained after 500
response evahrations. Regular corrections to the approximate gradient
by perturbations were provided for every 20 iterations.

follow, we have used the same specifications and starting

point as given in [1]. Three experiments were performed,

each using a different method for gradient approximation.

In the first experiment, perturbations were used only at

the starting point but not during the optimization. The

approximation of gradients relied on the Broyden update

in conjunction with the special iterations, which was simi-

lar to the methods of Madsen [5] and Zuberek [6]. The

optimization stopped after 266 response evaluations, of
which 75 were used for the initial perturbations. The

responses at this solution as depicted in Fig. 12 are consid-

erably inferior to the result reported in [1]. The optimiza-

tion has stopped prematurely. This experiment has demon-

strated that the Broyden update may not be sufficient for

large-scale nonlinear problems.

In a second experiment, regular corrections were pro-

vided during the optimization by perturbations for every

20 iterations. After 500 response evaluations, of which 375

were used for perturbations, we obtained the responses

shown in Fig. 13. Continuing the process for another 500

response evaluations, the responses shown in Fig. 14 were
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Fig. 14. Responses of the five-channel multiplexer obtained by continu-
ing the process described in Fig. 13 for another 500 response evaluations.
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Fig. 15. Responses of the five-channel multiplexer obtained using the
weighted update for gradient approximations. The use of appropriate
weights has effectively prevented the optimization from stopping pre-
maturely and reduced the use of time-consuming perturbations.

achieved, which are as good as the ones in [1]. From the

starting point, a total of 1000 response evaluations were

performed. Recall that 3800 response evaluations would be

required if the gradient calculations were simply replaced

by perturbations.

The third experiment is intended to demonstrate the

weighted update proposed in this paper. To apply this

updating formula, a weight w~~is set to zero if we know

that a function ~ is almost independent of a variable x,.

For instance, the insertion loss of channels 3, 4 and 5

and the common port return loss over the passbands of

these channels are ahnost independent of the filter cou-

plings in channels 1 and 2. Similarly, the responses within

the frequencies of channels 1 and 2 are almost indepen-

dent of the filter couplings in channels 3, 4 and 5. There-

fore, we set the corresponding weights to zero.

Utilizing the weighted update, we optimize the multi-

plexer without any regular correction by perturbations.

After 500 response evaluations we obtained the responses

shown in Fig. 15. By comparing this result with experiment

1 we can clearly see that the use of appropriate weights has

prevented the optimization from stopping prematurely. We

can also conclude from a comparison between experiments

2 and 3 (also, between Figs. 13 and 15) that the application

of the weighted update has effectively reduced the use of

time-consuming perturbations.

VIII. CONCLUSIONS

A new algorithm for gradient approximations has been

presented. Integration of this algorithm with powerful

gradient-based optimization techniques has been described

and illustrated by the minimax and /l implementations.

The effectiveness and efficiency of the proposed approach

have been demonstrated through diverse examples of prac-

tical significance, including FIiT modeling, worst-case

centering, and multiplexer design. A weighted update has

also been proposed which exploits possible sparsity and

decoupled structures to further reduce the computations

involved in estimating gradients. The new approach is very

useful when analytical evaluation of partial derivatives is

unavailable or tedious. The prospect of integrating our

method with existing CAD packages and thus bringing the

full power of advanced optimization techniques into prac-

tical microwave applications is especially promising.

APPENDIX

FORMULAS FOR POWELL’S SPECIAL ITERATIONS

The formulas for computing the increment vector for a

special iteration, as derived by Powell [4], are as follows.

An n by n (n being the dimension of x) orthogonal

matrix Dk is constructed at ealch iteration. Denote the

rows of Dk by d,?, i =1,2, ” co, n. At a special iteration, the

increment vector is set to a multiple of the first row vector

of Dk, as

h~=A~dl, (Al)

where A ~ is a parameter controlling the step Size of h,&

Usually it is set to the step size of the latest ordinary

iteration.

At the starting point D1 is set to an identity matrix. At

the k th iteration Dk is revised to produce Dk~ 1. We use

YiT for the rows of Dk + 1. For a special iteration, we simply
let

Jl=di+l> i=l,2,. ... l–l

yfl=dl. (A2)

For an ordinary iteration, the following steps take place:

Step 1: Compute oi=d~hk, i=l, z,.. ., n.

Step 2: Find t which is the greatest integer such that

at # o.

Step3: Let at= Oandz, =O. Fori= t-l, t–2,. .”,l,

compute

Zi ~G~i+l + ui+ldZ+l

ai ==ai+l + O;+l

Y, ‘c (~idi - uiZi)\[~i(~z + 0i’)l”2° (A3)

Step 4: Let ~i=di+l> i=t, t+l.”.,n-l. Let Y.=

hk/(h:hk)1z2.
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