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Efficient Optimization with Integrated
Gradient Approximations
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Abstract — A flexible and effective algorithm is proposed for efficient
optimization with integrated gradient approximations. It combines the
techniques of perturbations, the Broyden update, and the special iterations
of Powell. Perturbations are used to provide an initial approximation as
well as regular corrections. The approximate gradient is updated using
Broyden’s formula in conjunction with the special iterations of Powell. A
modification to the Broyden update is introduced to exploit possible
sparsity of the Jacobian. Utilizing this algorithm, powerful gradient-based
nonlinear optimization tools for circuit CAD can be employed without the
effort of calculating exact derivatives. Applications of practical significance
are demonstrated. The examples include robust small-signal FET modeling
using the /, techniques and simultaneous processing of multiple circuits,
worst-case design of a microwave amplifier, and minimax optimization of a
five-channel manifold multiplexer. Computational efficiency is greatly
improved as compared to estimating derivatives entirely by perturbations.

I. INTRODUCTION

ANY POWERFUL gradient-based algorithms have

been developed in recent years for nonlinear opti-
mization and applied to circuit CAD problems. For exam-
ple, Bandler, Kellermann, and Madsen have described
algorithms for linearly constrained minimax and /; optimi-
zation [1], [2]. However, the effort to extend their applica-
tion to a wide range of practical problems has been
frustrated by the requirement of exact gradients of all
functions with respect to all variables. For some applica-
tions, either an explicit sensitivity expression is not avail-
able, e.g., when time-domain analysis and nonlinear cir-
cuits are involved, or the actual evaluation of such an
expression is very tedious and time-consuming, e.g., for
large-scale networks. Partly due to these difficulties, exact
sensitivity calculations have not been implemented in many
general-purpose CAD software packages, although the
concept of adjoint network has been in existence for nearly
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two decades and has had success in many specialized
applications. The inability or inconvenience in calculating
the exact derivatives has created a gap between the theoret-
ical advances in gradient-based nonlinear optimization
techniques and their actual implementation.

With only the function values available, as is the case for
many CAD packages on the market, one usually resorts to
the method of perturbations (finite differences) for gradi-
ents. However, this seemingly simple alternative becomes
extremely inefficient when large-scale problems have to be
dealt with.

In this paper, we propose a flexible and effective ap-
proach to optimization with integrated gradient approxi-
mations. It is a hybrid approach which incorporates the
use of perturbations, the Broyden update [3], and the
special iterations of Powell [4]. The proposed algorithm
extends the previous work by Madsen [5] and Zuberek [6]
in two aspects. Perturbations are integrated in a flexible
manner to allow regular corrections to the approximate
gradients. Therefore, a suitable compromise between accu-
racy and computational labor may be achieved for various
applications, especially for large-scale circuit optimization.
We also propose a modified Broyden update to take
advantage of a possible sparse structure of the problem.

The practical usefulness of the new algorithm is demon-
strated through three diverse applications. The subjects are
of primary interest to microwave circuit engineers: robust
small-signal modeling of FET devices, worst-case fixed
tolerance design of a microwave amplifier, and large-scale
optimization of manifold multiplexers. Applying an ap-
proach to robust device modeling proposed by the authors
[7] which employs the /; optimization techniques and a
novel concept of simultaneous processing of multiple cir-
cuits, we have obtained self-consistent models of a FET
device using real measurement data. By integrating gradi-
ent approximations with a powerful minimax algorithm
{1], we are able to optimize a five-channel noncontiguous
band multiplexer efficiently and without exact derivatives.
The multiplexer problem involves 75 nonlinear variables.

II. GRADIENT APPROXIMATIONS

A. Estimating the Gradient by Perturbations

The first-order derivative of f,(x) with respect to x, can
be estimated by

af,(x) ~fj(x+hu,)—fj(x)
ax; - h

(1)
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where x =[x, x,---x,]” is the vector of variables, and u;
is a column vector which has 1 in the ith position and
zeros elsewhere. The accuracy of such an estimate may be
improved by using a smaller /i as well as by averaging the
results of a two-sided approximation (using both positive
and negative perturbations). This method is straightfor-
ward and reliable. However, the computational labor in-
volved grows in proportion to the dimension of the prob-
lem.

In the new algorithm described in this section, perturba-
tions are used to obtain an initial approximation to the
gradient at the starting point of an optimization process.
During the optimization, we may also incorporate a regu-
lar use of perturbations to maintain the accuracy of gradi-
ent approximations at a desirable level.

B. The Broyden Update

The Broyden update refers to a rank-one formula pro-
posed by Broyden [3] as

f(xe+h)— f(x)— GkhkhT
hihy *

G =G+ (2)
where G, is an approximation of the Jacobian [d f7/dx]”
at x,, h, is an increment vector and G, , provides an
updated Jacobian. The values of the function f at x, and
(x, + h,) are assumed available. If the two points (x, and
(x, + h;)) are iterates of the optimization process, then the
Broyden update requires no additional function evalua-
tions, regardless of the dimension of the problem.

Apparently, the approximate Jacobians generated by the
Broyden update are in general less accurate than those
obtained from perturbations. Hence, the optimization may
require more steps to reach the solution or may not reach
the correct solution at all. Broyden {3] has shown that for
quadratic functions the Broyden update will converge and
will reduce the overall computational effort. Although such
properties cannot be proved for a general nonlinear prob-
lem, the Broyden update still provides an efficient alterna-
tive for approximating derivatives.

The updated approximation G, , satisfies the following
equation:

f(xi+ k)= f(xp) =Gppihy. (3)
In other words, G, provides a perfect linear interpola-
tion between the two points x, and (x, + k).

Some difficulties in the application of the Broyden up-
date have been observed by many researchers (see, for
example, [4], [5], and [6]).

1) If some functions are linear in some variables and if
the corresponding components of h, are nonzero, then the
approximations of constant derivatives are updated by
nonzero values. Consider a simple example. Let f,=x} +
2x, be a function in f. Denote the variables by x =[x; x,
x,]7 and the gradient by f’(x) =[g, 8, g;]"- Two compo-
nents of the gradient, namely g, =0 and g, =2, are con-
stants and can be found accurately by perturbations; g, is
the only component that needs to be updated. Suppose
that x,=[1 1 1]%, h,=[0505 0.5]%, and a perfect esti-

mation of f’(x,) is available as [2 0 2]7. The approx-
imation to f (x,+h,), as given by the Broyden up-
date, would be [2.167 0.167 2.167]7 (the true value is
[3 0 2]7).
2) Along directions orthogonal to h, the Jacobian is not
updated:
Gop=G.p, for pTh; =0. (4)

To overcome these difficulties, we implement a weighted
update and the special iterations of Powell [4].
C. Weighted Broyden Update

The weighted update is to be applied to the Jacobian
matrix on a row-by-row basis. The jth row vector of the
approximate Jacobian, denoted by (g,), is an approxima-
tion to f’(x,), the gradient of f. Suppose that the Hess-
ian of f; is available to us and denoted by H;; then

[/ (x,+hy) = £ (x )+ H{x, ) hy. (5)

Analogously to (5), we devise an updating formula to
obtain an approximation to f'(x, +h;) as

(gj)k+1=(g])k+ailj(xk)hk' (6)
If we choose the coefficient a as

_ f(xe+hy) - ﬂ(xk)_(g,),fhk
hzllj(xk)hk

()

then the linear model as given by (3) will be preserved,
namely

fj(xk +hy)- fj(xk) = (gj):+1hk‘ (8)

In practice we are very unlikely to have access to the
Hessian of any f;. Even so, two basic facts are obvious: the
Hessian of a quadratic function is constant, and if fJ is
linear in x,, then the ith row and the /th column of the
Hessian contain only zeros. Hence, we propose the use of a
constant diagonal matrix

W, =diag[w;---w,], w20, i=1-,n (9)

This leads to a weighted Broyden update as follows.

£ (et )~ £(x)—(g))
‘IJTkhk

Wohin] - (10)

The weights w,, provide a measure of the linearity of f,.
If £, is linear in x,, we set w, =0, and if f; is nearly linear
in x;, we assign a small value to w,. It "should be clear
from (10) that only the relative magnitude of the weights is
important, not their absolute values.

Consider the simple example we have used in the previ-
ous section, namely f; = x2+2x,. Since f; is independent
of x, and linear in x,, we set wj, =0 and w,=1.
The approximate gradient given by (10) is [2.5 0 217,
compared to the result given by the Broyden update as
[2.167 0.167 2.167]7, and the true gradient [3 0 2]”.

(gj)k+1=(gj)k+ ik

49=Wh,= [lehkl c
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The assignment of weights requires some knowledge of
the functional relationship of fj(x). Such a knowledge
may come from experience or may be gained from sensitiv-
ity analyses by performing a few perturbations. For in-
stance, for a particular circuit, it may be known that some
designable parameters have little influence on the perfor-
mance function over some frequency or time intervals.
Using an adaptive method to find W, might be of some
theoretical interest. But it was felt to be unnecessary and
too complicated to be practical at the present time.

D. Powell’s Special Iterations

The Broyden update is a rank-one method. As has been
shown in (4), along directions orthogonal to h, the ap-
proximate Jacobian is not updated. If some consecutive
steps of optimization happen to be collinear, the updating
procedure may not converge. Powell {4] suggested a method
which produces strictly linearly independent directions.
For this purpose, special iterations are introduced which
intervene between the ordinary iterations of optimization.
The increment vector of such a special iteration is not
calculated to minimize the error functions; instead it serves
the purpose of improving the accuracy of gradient ap-
proximations. The algorithm for computing the increment
vector for a special iteration, as derived by Powell, is given
in the Appendix.

II1. A HYBRID APPROXIMATION ALGORITHM

Our hybrid algorithm for gradient approximations con-
sists of an initial approximation, the Broyden update,
Powell’s special iterations, and regular corrections pro-
vided by perturbations.

At the starting point of optimization, the initial ap-
proximate Jacobian G, is usually computed by perturba-
tions. However, G, may be already available; for example,
it may have been stored from a previous optimization, and
can be utilized to avoid unnecessary computations. This
option would be useful if similar problems are being
solved repetitively (e.g., the same circuit is optimized with
respect to different specifications). The accuracy of G, is
not very critical to the overall approximation. We have
observed for some examples that convergence was achieved
despite the erroneous estimates of G,.

There is little hard evidence as to how frequently the
special iterations should be used. Numerical experience,
ours as well as other authors’, has suggested the use of a
special iteration between every two ordinary ones (i.e.,
every third iteration is a special iteration). Also, in our
implementation, a special iteration is skipped provided
that the changes in the functions agree fairly well with the
linear prediction by the approximate gradient. This is
considered to be true if

||fj(xk+hk)“ ﬂ(xk)_ Ghl
<O f(x,+ )~ f(x )l (1)

The purpose of this provision is to avoid unnecessary
computations.
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Whether perturbations should be used during optimiza-
tion depends on the application. For small or mildly
nonlinear problems, the Broyden update may suffice. For
large-scale problems, especially in circuit applications
where highly nonlinear functions are involved, the correc-
tion provided by perturbations is likely to be necessary.
We have incorporated in our algorithm the use of per-
turbations with prescribed regularity, say, at every kth
optimization iteration.

The Broyden update with or without weights, depending
on whether the necessary knowledge of f(x) is available,
is employed between perturbations.

Software for gradient-based optimization typically re-
quires a user-defined routine which accepts a set of values
for x as input and returns the values of f(x) as well as the
first-order derivatives. We have implemented an interface
which integrates gradient approximations with optimiza-
tion. Taking a set of values for x from an optimizer, it calls
a user-defined routine for the function values, carries out
necessary operations for gradient approximations, and then
returns to the optimizer the values of f(x) as well as the
approximate Jacobian. The interface is transparent to both
the optimizer and the user-defined simulation routine. The
optimizer is provided with the required gradients, and the
user-defined routine (typically a circuit simulation module)
works as if the optimizer did not require gradients.

We have integrated our gradient approximation al-
gorithm with two recent optimization methods [1], [2], for
the minimax problems as

(12)

minimize max { f,(x)}
x J
and the /; problems as

m

minimize Y |fj(x)| (13)
x j=1

respectively. The methods described in [1] and [2] are
two-stage algorithms. The second stage is to be employed
near the solution to accelerate the rate of convergence, for
which the accuracy of the approximate gradient may be-
come critical. Hence, our implementation allows a more
frequent use of perturbations in the second stage.

The effectiveness and efficiency of the new approach are
clearly shown from the results of solving a large variety of
problems. The results on some mathematical test problems
can be found in [8], [9], and [10].

IV. A Two-SECTION TRANSMISSION-LINE
TRANSFORMER EXAMPLE

Consider the classical two-section 10:1 transmission-
line transformer shown in Fig. 1. Originally proposed by
Bandler and Macdonald [11], this problem has been widely
used to test minimax algorithms. The error functions ( 1)
are given by the reflection coefficient sampled at 11 fre-
quencies normalized with respect to 1 GHz: {0.5,
0.6,---,1.5}. Madsen and Schjaer-Jacobsen [12] have
shown that when we take the characteristic impedances Z;
and Z, as variables and keep the lengths /; and /, con-
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Two-section, 10:1 transmission-line transformer.

Fig. 1.

Fig. 2. Minimax contours for the two-dimensional singular minimax
problem arising from optimization of the two-section transmission-line
transformer. Eight iterations using exact gradients are illustrated.

stant at their optimal values (the quarter wavelength at the
center frequency), the minimax problem is singular. Fig. 2
shows the minimax contours and illustrates the solution
obtained using exact derivatives. If the derivatives were to
be estimated by perturbations, 24 function evaluations
would have to be performed. Using our gradient ap-
proximation, we obtained the solution, as shown in Fig. 3,
after 18 function evaluations.

For the same transformer, we also formulate an /;
problem. The reflection coefficient at the minimax opti-
mum was taken as a measurement from which we attempt
to identify the values of Z; and Z,. The solutions obtained
with the gradients estimated entirely by perturbations and
by our new algorithm are illustrated in Figs. 4 and 5,
respectively.

A comparison between Figs. 2 to 5 reveals that the
solutions obtained using approximate gradients require
more iterations of the optimization but overall fewer func-
tion evaluations, which is expected.

Fig. 3.

]

3.5H

Minimax optimization of the two-section transmission-line
transformer. Ten iterations using approximate gradients are illustrated.

60

Z

Fig. 4. [, contours for the problem arising from parameter identifica-
tion of the two-section transmission-line transformer. Using perturba-
tions for the gradients, the solution required 14 iterations (42 function
evaluations). The first seven iterations are illustrated.

V. FET MoDELING USING /; OPTIMIZATION WITH
APPROXIMATE GRADIENTS

A. Introductory Remarks

The use of /; optimization, based on its theoretical
properties, has been recommended for nonlinear data fit-
ting and device modeling [1}, [7], [13]. Jansen and Koster
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Z;

Fig. 5. Parameter identification of the two-section transmission-line
transformer using /; optimization with approximate gradients. The
solution has required 19 iterations and 27 function evaluations. The
first nine iterations are illustrated.

[14] have investigated the use of generalized /, optimiza-
tion in the modeling of microwave transistors, and they
concluded that values of p around unity would lead to
relatively stable solutions with good convergence proper-
ties. A novel approach to robust modeling of microwave
devices has been presented by the authors [7] which ex-
ploits the unique properties of the /; norm and employs
the concept of simultaneous processing of multiple cir-
cuits. It has the advantage of establishing not only a good
equivalent circuit model but also a reliable measure of the
self-consistency of the model. In the context of this paper,
an example of FET modeling is given to illustrate the /;
optimization with integrated gradient approximations.
One of the concerns in practical modeling of FET
devices is the uniqueness of the solution. A family of
solutions may exist which all exhibit a reasonable match
between the calculated and measured responses. The ap-
proach described in [7] is intended to improve the chance
of unique identification of the model parameters by
processing simultaneously multiple circuits. In the case of
FET modeling, we create multiple circuits by taking mea-
surements on the scattering parameters under several dif-
ferent biasing conditions. From the physical characteristics
of the device, we know that with respect to different
biasing conditions some model parameters should remain
almost unchanged while the others should vary smoothly.
Therefore, from a family of possible solutions we give
preference to the one that exhibits the desired consistency.
Such a self-consistent model can be achieved automatically
by using the /; optimization and choosing those model

R4
MA—¢ drain

‘ Rdsg = Cds

source

Fig. 6. The small-signal equivalent circuit model for the FET device.

parameters that are insensitive to bias as common vari-
ables.

B. The Model and the Measurements

The small-signal equivalent circuit model for the FET is
shown in Fig. 6. This model is widely used by commercial
programs such as TOUCHSTONE [15] and SUPER-
COMPACT [16]. The model has 11 parameters that we
will consider as optimization variables:

{ng Rd) LS7 T, Rds) Rn Rsach’Cdgycd_w gm}‘

The first four parameters are considered to be bias insensi-
tive.

Three sets of measurements on scattering parameters of
a FET device, which were taken at 17 frequency points
from 2 GHz to 18 GHz, 1 GHz apart, under the following
biasing conditions were made available by Pucel [17]:

1) Vds=4V7 I/gs=000 V, Ids=177 mA
2) V=4V, Ves=—174V, I,, =92 mA
3) V=4V, V,,=-310V, I,,=3TmA.

C. Formulation of the Problem

Microwave device modeling utilizing multiple circuits
has been formulated in general as an /; optimization
problem by the authors [7]. The following are formulas
(12) to (14) in [2}:

n, k,
minimize ), Y |f| (14)
x t=1:1=1
where
fi=wi | Fe(x) = (Fm)'] (15)
and
xl
2
x=| ' (16)
x7e

with superscript and index ¢ identifying the 7th circuit. n,
is the number of circuits and k, is the number of functions
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arising from the fth circuit. x‘ represents the vector of
parameters of the tth circuit. Vectors x., t=1,---,n,
contain only those parameters that vary between different
circuits. They do not include the common variables, i.e.,
those parameters that assume the same values for all
circuits. For each circuit, we combine the common vari-
ables and x/, to form the vector x’.

For the FET modéling problem under consideration,
which has three sets of measurements, we specialize the
formulas as follows:

2

minimize ¥ ¥ T kgl{lkem(w,-)] |+ [tm [ £ ()] |}
(17)

where
f_;';c(wt) =Fj;c(xtr"-’i)_s}tk(‘*’i)- (18)

In (18), Fj and Sj are the calculated and measured
scattering parameters, respectively, with the superscript
identifying three different biasing conditions. Having 17
frequency points with real and imaginary parts of the
complex S parameters being treated separately, we have a
total of 408 error functions. The variables to be optimized
in (17) are defined as

X
x=|x

(19)

X

[W AN =

The vector x' actually has two parts as x'=[x¢ x.]7,

where x¢ consists of the common variables as
x=[R,R,L,7|". (20)

These are the parameters we expect not to change with
respect to different bias. The vector x) contairs the re-
maining parameters of model ¢, namely

T
t=[Ry, RERLCL CL Chgl]

The total number of variables is 25.

(21)

D. Results

To solve the problem we have formulated, the /; opti-
mizer described in [2] was employed. The gradient required
was provided by the approach proposed in this paper. We
should point out that in this case the evaluation of exact
sensitivities is actually possible using the scheme outlined
in [7). However, it involves lengthy and complicated pro-
gramming,. First of all, two adjoint solutions are neéded to
evaluate the sensitivity expréssions for the admittance ma-
trix. From these expressions the sensitivities of the S
parameters are derived. Since multiple circuits are processed
simultaneously, a complex coding scheme is needed to
associate functions arising from different circuits with the
appropriate variables. It is then very difficult to modify the
software when needed. Comparatively, the calculation of
the function values alone requires much simpler effort.
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TABLE I
ParRaMETER VALUES OF THE FET MODELS

Solution
Parameter Starting Point
Case 1 Case 2 Case 3
R, (OH) 1.0 2.6025 2.6025 2.6025
Ry (OH) 1.0 3.7630 3.7630 3.7630
R4, (KOH) 0.143 0.1992 0.1638 0.1632
Ri (OH) 1.0 0.0099 0.0999 0.3891
R, (OH) 1.0 1.0016 0.9220 0.6482
L, (nH) 0.02 0.0039 0.0039 0.0039
Cg (OF) 1.4 0.7181 0.4417 0.3454
Cqg (PF) 0.07 0.0306 0.0475 0.0609
Cas (0F) 0.4 0.2228 0.2229 0.2151
g, (/OH) 0.09 0.06%6 0.0521 0.0410
T (ps) 7.0 3.9558 3.9558 3.9558
Biasing éonditions
Case I: Vg=4V V=000V I4=177mA
Case 20 Vy=4V  Vg=-174V  I4=92mA
Case 31 Vg=4V  Vg=-3.10V  I4=3TmA

The starting points for the three circuits are identical.

This, from the view point of reducing software complexity,
justifies the pursuit of gradient approximation.

Three experiments were conducted which have used
different schemes for gradient approximation. From the
starting point given in Table 1, they have reached practi-
cally the same solution, which is also given in Table 1. The
matches between the calculated and measured responses
for the first circuit, at both the starting point and the
solution, are shown in Figs. 7 and 8. The match for the
other two biasing conditions is similar and hence omitted.

The first experiment corresponds to the conventional
approach, in which the gradients were estimated solely by
perturbations. A total of 468 circuit simulations were
required to reach the solution.

In the second case, the Broyden update without weights
was used. Regular corrections were also provided by per-
turbations for every five iterations. Only 128 circuit simu-
lations were needed for this solution.

For the third experiment, we took advantage of an
inherent decomposition in the multi-circuit formulation.
Notice that the responses (and error functions) of one
circuit are absolutely uncorrelated to the independent
parameters (x/) of any other circuits. Obviously, the de-
rivatives corresponding to such decoupled functions and
variables are always equal to zero. However, when we use
the Broyden update without weights, these derivatives may
be changed to some nonzero values, thus introducing ap-
parent errors to the approximation. We can avoid this by
using the weighted update. By assigning zero weights to
decoupled functions and variables, we can keep the zero
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MEASUREMENT:

MODEL: FETMDL1 CB5029A.DAT
MS11 MS21 MS12 MS22
. ,///
/
~ ~. /
/ﬁ\v/\yw -
/ -
.I —
/ \
AS11 AS24 AS12 AS22

N

Fig. 7. The scattering parameter match between the FET model and the measurements at the starting point, for ¥ =

Ves =0V, and I, =177 mA:

MODEL: FETMDL1 MEASUREMENT: C85029A.DAT
MS11 Ms21 Msi2 Ms22
[X /
/ AS11 As21 As12 As22

\

/

Fig. 8. The scattermg parameter match between the FET model and the measurements at the solution, for ¥, =4V, V,

V; and I,, =177 mA

derivatives undisturbed throughout the optimization pro-
cess. The application of this concept has reduced the use of

~ perturbations and led to the solution after only 79 circuit
simulations. This represents less than 1/5 of the simula-
tions required by the first experiment as well as a 38
percent saving in computational effort as compared to the
second experiment.

VI.

’g:

4V,

=0
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WORST-CASE DESIGN OF A MICROWAVE AMPLIFIER

Worst-case design using optimization techniques in gen-
eral has been discussed in [18]. Consider a vector of
nommal des1gnab1e parameters

o =[ed---o0]"

(22)
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500 Transistor 500

NEC70000

Fig. 9. A microwave amplifier.

a vector of associated tolerances

(23)

€= [81”'8n]T

and a tolerance region defined by

R,={0l¢°—e<d<¢’+e}. (24)

We seek an optimally centered design such that the
specifications are satisfied over the tolerance region. It can
be formulated as a minimax problem, as

minimize max max { f; 25
imize m2 ¢ERE{f,(¢)} (25)
where fj, Jj=1,--+,m, are a set of error functions derived
from the design specifications. In practice, we usually
consider as candidates for the worst case the vertices of the
tolerance region defined by

R,={o|o;=¢)+ep, p,€{-1,1},i=1,---,n}. (26)

Consider the worst-case fixed tolerance design of a
microwave amplifier. As shown in Fig. 9, the amplifier
consists of a NEC70000 FET and five transmission lines
[15]. The FET is characterized by tabulated scattering
parameters provided by the manufacturer. The design vari-
ables are the characteristic impedance Z and the lengths /,
of the transmission lines. For each length /, we assume a 5
percent tolerance. The design specifications are given by

7.05 dB < 20log|Sy| <8.2dB for w,=6,7,--,18 GHz.

A total of 26 error functions ( ;) arise from the upper and
lower specifications at 13 frequencies.

The worst-case design was accomplished by two phases
of optimization. In the first one, we predicted an initial set
of worst-case vertices by first-order changes. For each f;, a
vertex ¢’ was selected by

¢;l=¢?+.u';jep ”{=Slgn(af}/a¢z)’ i=1""7n
27
where the derivatives df, /d¢, were estimated at the nomi-
nal point at the start of the optimization by perturbations.
Consequently, 26 vertices (one for each f,) were considered
for the minimax problem

mini%nize mjax{fj(tbf)} (28)

At the solution, by using (27) with respect to the new
nominal point, we found that ten of the worst-case vertices
had changed (i.e., the signs of some df, /d¢; had changed).
The new vertices were added to the worst-case set. The
corresponding old vertices were kept, rather than replaced,
in order to stabilize the algorithm. We had, therefore, a

TABLE II
PARAMETER VALUES OF THE MICROWAVE AMPLIFIER

Parameter Starting Point Solution
I3 52.96 69.01
& 148.13 152.01
A 26.80 18.48
L 24.01 5.10
& 46.63 36.49
Z 8127 126.39

The starting point is a minimax nominal design
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Fig. 10. Worst-case envelope for the amplifier response at the centered
solution.

total of 36 worst-case vertices. A second optimization was
performed and at its solution the worst-case set was found
to be complete (i.e., no more sign change in (27)).

The nominal parameter values at the starting point and
the final solution are given in Table II. The total number
of function evaluations is 280, in contrast to the 585
required if perturbations were used throughout the optimi-
zation. Fig. 10 depicts the worst-case envelope at the
solution.

VII. PrACTICAL DESIGN OF A
Five-CHANNEL MULTIPLEXER

A. Introductory Remarks

A minimax solution of a five-channel 11-GHz noncon-
tiguous band multiplexer was given in detail by Bandler
et al. [1]. In order to provide the exact sensitivities re-
quired, the theory due to Bandler e al. [19] was imple-
mented in a computer program which has taken months of
effort to develop and test. Furthermore, because the sensi-
tivity expressions depend highly on the circuit structure
and vary from component to component, every change to
the problem, such as assigning different variables, requires
expert modification to the software. In fact, the sensitivi-
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Fig. 11. Responses of the five-channel multiplexer at the starting point.

ties with respect to all possible variables were computed
even though some of them have not been actually used;
otherwise the coding scheme would have become un-
manageable. Large amounts of computer memory were
required to store various adjoint solutions and inter-
mediate expressions. By utilizing our gradient approxima-
tion, it is possible to efficiently design a multiplexer without
all these troubles associated with computing the exact
sensitivities. The complexity and size of the program can
therefore be considerably reduced.

The five-channel multiplexer provides an excellent illus-
tration of efficient gradient approximations for two rea-
sons. First, it involves 75 variables and, therefore, to rely
on perturbations would be prohibitively expensive. To be
more specific, suppose that we use the initial parameter
values and specifications suggested by Bandler er al. [1].
The multiplexer responses at the starting point are shown
in Fig. 11. We have reached a result similar to the one
reported in [1] after 50 iterations of optimization using
exact derivatives. To rely on perturbations for the gradi-
ents, we would have to compute multiplexer responses
3800 times (50X 76). We will show that efficient gradient
approximations reduce the number of response evaluations
significantly.

Also, this example is naturally suited for the use of the
weighted Broyden update described earlier in this paper.
From Fig. 11 it is intuitively obvious that the response
functions at lower frequencies should be almost indepen-
dent of the variables that are related to the filters of
channels 1 and 2 (channel 1 has the highest center
frequency). Similarly, the responses at higher frequencies
are almost independent of the variables related to the
filters of channels 3, 4 and 5. We will demonstrate the
advantage of using the weighted update.

B. Results

Details of the five-channel multiplexer structure, such as
the channel center frequencies, bandwidths, and coupling
matrices, can be found in [1]. The channel filters are
assumed lossy. Frequency dispersion and nonideal junc-
tions are also taken into account. For all the results that
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Fig. 12. Responses of the five-channel multiplexer obtained using only
the Broyden update and special interations for gradient approxima-
tions. The optimization has stopped prematurely.
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Fig. 13. Responses of the five-channel multiplexer obtained after 500
response evaluations. Regular corrections to the approximate gradient
by perturbations were provided for every 20 iterations.

follow, we have used the same specifications and starting
point as given in [1]. Three experiments were performed,
each using a different method for gradient approximation.

In the first experiment, perturbations were used only at
the starting point but not during the optimization. The
approximation of gradients relied on the Broyden update
in conjunction with the special iterations, which was simi-
lar to the methods of Madsen [5] and Zuberek [6]. The
optimization stopped after 266 response evaluations, of
which 75 were used for the initial perturbations. The
responses at this solution as depicted in Fig. 12 are consid-
erably inferior to the result reported in [1]. The optimiza-
tion has stopped prematurely. This experiment has demon-
strated that the Broyden update may not be sufficient for
large-scale nonlinear problems.

In a second experiment, regular corrections were pro-
vided during the optimization by perturbations for every
20 iterations. After 500 response evaluations, of which 375
were used for perturbations, we obtained the responses
shown in Fig. 13. Continuing the process for another 500
response evaluations, the responses shown in Fig. 14 were
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Fig. 14. Responses of the five-channel multiplexer obtained by continu-
ing the process described in Fig. 13 for another 500 response evaluations.
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Fig. 15. Responses of the five-channel multiplexer obtained using the
weighted update for gradient approximations. The use of appropriate
weights has effectively prevented the optimization from stopping pre-
maturely and reduced the use of time-consuming perturbations.

achieved, which are as good as the ones in [1]. From the
starting point, a total of 1000 response evaluations were
performed. Recall that 3800 response evaluations would be
required if the gradient calculations were simply replaced
by perturbations.

The third experiment is intended to demonstrate the
weighted update proposed in this paper. To apply this
updating formula, a weight w, is set to zero if we know
that a function f; is almost independent of a variable x,.
For instance, the insertion loss of channels 3, 4 and 5
and the common port return loss over the passbands of
these channels are almost independent of the filter cou-
plings in channels 1 and 2. Similarly, the responses within
the frequencies of channels 1 and 2 are almost indepen-
dent of the filter couplings in channels 3, 4 and 5. There-
fore, we set the corresponding weights to zero.

Utilizing the weighted update, we optimize the multi-
plexer without any regular correction by perturbations.
After 500 response evaluations we obtained the responses
shown in Fig. 15. By comparing this result with experiment
1 we can clearly see that the use of appropriate weights has
prevented the optimization from stopping prematurely. We
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can also conclude from a comparison between experiments
2 and 3 (also, between Figs. 13 and 15) that the application
of the weighted update has effectively reduced the use of
time-consuming perturbations.

VIIL

A new algorithm for gradient approximations has been
presented. Integration of this algorithm with powerful
gradient-based optimization techniques has been described
and illustrated by the minimax and /; implementations.
The effectiveness and efficiency of the proposed approach
have been demonstrated through diverse examples of prac-
tical significance, including FET modeling, worst-case
centering, and multiplexer design. A weighted update has
also been proposed which exploits possible sparsity and
decoupled structures to further reduce the computations
involved in estimating gradients. The new approach is very
useful when analytical evaluation of partial derivatives is
unavailable or tedious. The prospect of integrating our
method with existing CAD packages and thus bringing the
full power of advanced optimization techniques into prac-
tical microwave applications is especially promising.

CONCLUSIONS

APPENDIX
FORMULAS FOR POWELL’S SPECIAL ITERATIONS

The formulas for computing the increment vector for a
special iteration, as derived by Powell [4], are as follows.

An n by n (n being the dimension of x) orthogonal
matrix D, is constructed at each iteration. Denote the
rows of D, by d7, i=1,2,-- -, n. At a special iteration, the
increment vector is set to a multiple of the first row vector
of D, as

(A1)

where A, is a parameter controlling the step size of h,.
Usually it is set to the step size of the latest ordinary
iteration.

At the starting point D, is set to an identity matrix. At
the kth iteration D, is revised to produce D, ,. We use
yT for the rows of D . For a special iteration, we simply
let

hk = Akall,

yv,i=4d,,1, i=1,2,---,n—1
yo=dy. (A2)

For an ordinary iteration, the following steps take place:

Step 1: Compute o,=d[h;, i=1,2,---,n.

Step 2: Find ¢ which is the greatest integer such that
o,+0.

Step 3: Let a,=0and z,=0. Fori=¢—-1, 1-2,---,1,
compute

;=211 0,14,
ai = ai+1 + °i2+1
1/2
Y, = (a;d; — oizi)/[ai(a’ + G"z)] ) (A3)

Step 4: Let y,=d, ., i=t, t+1,---,n—1. Let y,=
hy /(hEh )Y,
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